(本小题满分13分)已知函数的导数.a,b为实数,.(1)若在区间上的最小值、最大值分别为、1,求a、b的值;(2)在 (1) 的条件下,求曲线在点P(2,1)处的切线方程;(3)设函数,试判断函数的极值点个数.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M. (1)求证:平面ABM平面PCD; (2)求三棱锥M-ABD的体积.
某学校准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位cm),跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175以下(不包括175cm)定义为“不合格” (1)求甲队队员跳高成绩的中位数 (2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5人,则5人中“合格”与“不合格”的人数各为多少? (3)从甲队178cm以上(包括178cm)选取2人,至少有一人在186cm以上(包括186cm)的概率为多少?
如图1,在直角梯形中,,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2. (1)求证:∥平面; (2)求证:平面; (3)求点到平面的距离.
已知圆的极坐标方程为:. (1)将极坐标方程化为普通方程; (2)若点在该圆上,求的最大值和最小值.
已知函数 (1)试判断函数的单调性; (2)设,求在上的最大值; (3)试证明:对,不等式.