已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.
空间四边形OABC,各边及对角线长都相等,E、F分别为AB、OC的中点,求OE与BF所成的角。
如图所示,在长方体OABC-OABC中,|OA|=2,|AB|=3,|AA|=2,E是BC的中点。 (1)求直线AO与BE所成角的大小; (2)作OD⊥AC于D。求点O到点D的距离。
已知F、F为双曲线(a>0,b>0)的焦点,过F作垂直于x轴的直线交双曲线于点P,且∠PFF=30,求双曲线的渐近线方程。
已知圆+-9x=0,与顶点在原点,焦点在x轴上的抛物线交于A、B两点,OAB的垂心恰为抛物线的焦点,求抛物线的方程。
写出下列命题的“p”命题,并判断它们的真假。 (1)p:x,x+4x+4≥0;(2)p:x,x-4=0。