甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自被聘用的概率;(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望).
(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且. (1)求证:平面平面; (2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
(本小题满分12分)已知数列满足: (Ⅰ)当时,求数列的通项公式; (Ⅱ)在(Ⅰ)的条件下,若数列满足为数列的前项和,求证:对任意.
(本小题满分12分)已知函数 (1)求函数的最小正周期及在单调递增区间; (2)在中,A、B、C分别为三边所对的角,若,求的最大值.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率. (1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率; (2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
(本小题满分14分)已知函数在点处的切线为. (1)求实数,的值; (2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由; (3)若,求证:.