各项均为正数的数列{an}满足an2=4Sn-2an-1(n∈N*),其中Sn为{an}的前n项和.(1)求a1,a2的值;(2)求数列{an}的通项公式;(3)是否存在正整数m、n,使得向量a=(2an+2,m)与向量b=(-an+5,3+an)垂直?说明理由.
(本小题满分l4分) 如图4,在四棱锥中,底面是矩形,平面,,,于点. (1) 求证:; (2) 求直线与平面所成的角的余弦值.
本小题满分12分) 在一次人才招聘会上,有A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A、B两家公司同时录用,试问: (1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少? (2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(其他因素不计),该人应该选择哪家公司?为什么?(参考值:、、)
(本小题满分12分) 在中,角的对边分别为. 已知向量,,. (1) 求的值; (2) 若, , 求的值.
.(本题14分)设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
.已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
(Ⅰ)用x,y表示混合食物成本c元; (Ⅱ)确定x,y,z的值,使成本最低.