已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.(1)求数列{an}的通项公式;(2)设bn=log2an,cn=,记数列{cn}的前n项和Tn.若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.
已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。 (1)求证:C1,C2总有两个不同的交点; (2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
如图,已知矩形ABCD中,AB=1,BC=,PA平面ABCD,且PA=1。 (1)问BC边上是否存在点Q,使得PQQD?并说明理由; (2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q的正切。
已知函数f(x)=的图像在点(为自然常数)处的切线斜率为3. (Ⅰ)求实数的值 (Ⅱ)若,且对任意的恒成立,求得最大值 (Ⅲ)当时,证明
已知函数 (Ⅰ)求的单调区间; (Ⅱ)若,,求的取值范围.
设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有1解,求实数的取值范围.