已知,(为自然对数的底数).(Ⅰ)若在上是减函数,求实数的取值范围;(Ⅱ)当时,求函数在()上的最小值;(Ⅲ)求证:.
已知函数.(1)求函数的最小正周期,最大值及取最大值时相应的值;(2)如果,求的取值范围.
在正四棱锥中,侧棱的长为,与所成的角的大小等于.(1)求正四棱锥的体积;(2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)设点的横坐标,求点的坐标(用的代数式表示);(3)设为坐标原点,求四边形面积的最小值.
等比数列满足,,数列满足(1)求的通项公式;(2)数列满足,为数列的前项和.求;(3)是否存在正整数,使得成等比数列?若存在,求出所有 的值;若不存在,请说明理由.
某海域有、两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以、所在直线为轴,的垂直平分线为轴建立平面直角坐标系。(1)求曲线的标准方程;(2)某日,研究人员在、两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),、两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?