如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形. (1)求正视图的面积;(2)求四棱锥P-ABCD的体积.
已知动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=与t=2 (0<<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.
在等差数列中,,.令,数列的前项和为.(1)求数列的通项公式和;(2)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.
已知椭圆:的一个焦点为,离心率为.设是椭圆长轴上的一个动点,过点且斜率为的直线交椭圆于,两点.(1)求椭圆的方程;(2)求的最大值.
已知函数.(1)求曲线在点处的切线方程;(2)若对于任意的,都有,求的取值范围.