【2015高考陕西,文21】设(Ⅰ)求;(Ⅱ)证明:在内有且仅有一个零点(记为),且.
一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
已知数列是首项为且公比q不等于1的等比数列,是其前n项的和,成等差数列.证明:成等比数列.
已知等差数列中,,前10项的和(1)求数列的通项公式;(2)若从数列中,依次取出第2、4、8,…,,…项,按原来的顺序排成一个新的数列,试求新数列的前项和.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分别是AC、AD上的动点,且(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?