【2015高考天津,文18】(本小题满分13分)已知是各项均为正数的等比数列,是等差数列,且,.(Ⅰ)求和的通项公式;(Ⅱ)设,求数列的前n项和.
李庄村电费收取有以下两种方案供农户选择: 方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元. 方案二:不收管理费,每度0.58元. (1)求方案一收费L(x)元与用电量x(度)间的函数关系; (2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度? (3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?
在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,). (1)若⊥,求tanx的值; (2)若与的夹角为,求sinx+cosx的值.
已知方程x2+px+q=0的两个不相等实根为α,β.集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅,求p,q的值?
已知定点P(6,4)与定直线l1:y=4x,过P点的直线l与l1交于第一象限Q点,与x轴正半轴交于点M,O为坐标原点,求使△OQM面积最小的直线l方程.
已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动. (Ⅰ)求线段AB的中点轨迹方程M; (Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.