已知命题方程在上有解;命题不等式恒成立,若命题“”是假命题,求的取值范围.
已知长方形的四个顶点A(0,0)、B(2,0)、C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,求tanθ的取值范围.
已知:两点A,B(3,2),过点P(2,1)的直线l与线段AB有公共点求直线l的倾斜角的取值范围
已知直线与直线没有公共点,求实数m的值
已知直线l经过直线5x-2y+3=0和5x+y-9=0的交点,且与直线2x+3y+5=0平行,求直线l方程.
已知圆C:,直线l:(m∈R).(Ⅰ)证明:不论m取什么实数,直线l与圆恒交于两点.(Ⅱ)求直线被圆C截得的弦长最小时l的方程.