一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中,,,.(1)求证:;(2)求三棱锥的体积.
(本小题满分10分)选修4-1:几何证明选讲如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上.(Ⅰ)若,求的值;(Ⅱ)若,证明:.
(本小题满分12分)已知函数,,设.(Ⅰ)求函数的单调区间;(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;(Ⅲ)是否存在实数m,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由。
(本小题满分12分)如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.(Ⅰ)求的值;(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.
(本小题满分12分)已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2). (Ⅰ) 求二面角B-AC-D的大小;(Ⅱ) 若异面直线AB与DE所成角的余弦值为,求k的值.
(本小题满分12分)某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
(参考公式:其中) (Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。