(本小题满分12分)如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.(Ⅰ)求的值;(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.
已知以点为圆心的圆与轴交于点,与轴交于点,其中为坐标原点。 (1)求证:的面积为定值; (2)设直线与圆交于点,若,求圆的方程。
如图,边长为2的正方形中, (1)点是的中点,点是的中点,将分别沿折起,使两点重合于点。求证: (2)当时,求三棱锥的体积。
已知的顶点的坐标为,边上的中线所在直线方程为的平分线所在直线方程为,求边所在直线的方程。
已知圆关于直线对称,圆心在第二象限,半径为. (1)求圆的方程; (2)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,求直线的方程;若不存在,说明理由。
数列满足,且. (1)求 (2)是否存在实数t,使得,且{}为等差数列?若存在,求出t的值;若不存在,说明理由.