在某次测验中,有6位同学的平均成绩为75分.用表示编号为()的同学所得成绩,且前5位同学的成绩如下:70,76,72,70,72.(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
(本小题满分10分)某研究性学习小组对某花卉种子的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月1日至3月5日的昼夜温差及每天30颗种子的发芽数,并得到如下资料:
参考数据 ,其中(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)(2)从3月1日至3月5日中任选两天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望和方差.
(本小题满分10分)已知单调递增的等比数列满足:,且是的等差中项.(1)求数列的通项公式;(2)若,,求使成立的正整数的最小值.
(本小题满分16分)已知数列的奇数项是首项为的等差数列,偶数项是首项为的等比数列,数列前项和为,且满足.(1)求数列的通项公式;(2)若,求正整数的值;(3)是否存在正整数,使得恰好为数列中的一项?若存在,求出所有满足条件的值,若不存在,说明理由.
(本小题满分16分)设,函数,其中常数a.(1)求函数的极值;(2)设一直线与函数的图象切于两点A(x1,y1),B(x2,y2),且.①求的值;②求证:.
(本小题满分16分) 如图,过椭圆的左顶点和下顶点且斜率均为的两直线分别交椭圆于,又交轴于,交轴于,且与相交于点.当时,是直角三角形.(1)求椭圆L的标准方程;(2)①证明:存在实数,使得;②求|OP|的最小值.