过抛物线的焦点作一条斜率为k(k≠0)的弦,此弦满足:①弦长不超过8;②弦所在的直线与椭圆3x2+ 2y2= 2相交,求k的取值范围.
(本小题满分12分) 函数的定义域为集合,,. (Ⅰ)求集合及; (Ⅱ)若,求的取值范围.
(本小题满分12分) 如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点) (1)求椭圆的方程; (2)若直线与椭圆交于两点,当时,求面积的最大值.
(本小题满分12分) 在如图所示的四棱锥中,已知 PA⊥平面ABCD, , ,,为的中点. (1)求证:MC∥平面PAD; (2)求直线MC与平面PAC所成角的余弦值; (3)求二面角的平面角的正切值.
(本小题满分12分) 如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形. (1)求此时椭圆的方程; (2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.
(本小题满分12分) 设双曲线的方程为,、为其左、右两个顶点,是双曲线上的任意一点,作,,垂足分别为、,与交于点. (1)求点的轨迹方程; (2)设、的离心率分别为、,当时,求的取值范围.