如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:(1)设△POQ的面积为,求关于的函数解析式。(2)当△POQ的面积最大时,△ POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。
如图,已知AB=DC,∠1=∠2.求证:AC=BD.
解方程:
解不等式组:,并把它的解集在数轴上表示出来.
计算:。
先阅读下面材料,再解答问题: 初中数学教科书中有这样一段叙述:“要比较与的大小,可先求出与的差,再看这个差是正数,负数还是零.由此可见,要比较两个代数式值的大小,只要考虑它们的差就可以了. 甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购买粮食用去100元,设甲、乙两人第一次购粮食的单价为每千克x元,第二次购买粮食的单价为每千克y元 (1)用含x、y的代数式表示:甲每次购买粮食共需要付款______元,乙两次共购买_________千克粮食,若甲两次购买粮食的平均单价为元,乙两次购买粮食的平均单价为元, 则=_______,=_________. (共四个填空) (2)若规定“谁两次购买粮食的平均单价低,谁的购买粮食方式更合算”,请你判断甲、乙两人的购买粮食方式那一个更合算些,并说明理由.