某种报纸,进货商当天以每份1元从报社购进,以每份2元售出.若当天卖不完,剩余报纸报社以每份0.5元的价格回收.根据市场统计,得到这个季节的日销售量X(单位:份)的频率分布直方图(如图所示),将频率视为概率. (1)求频率分布直方图中a的值;(2)若进货量为n(单位:份),当n≥X时,求利润Y的表达式;(3)若当天进货量n=400,求利润Y的分布列和数学期望E(Y)(统计方法中,同一组数据常用该组区间的中点值作为代表).
(本小题满分12分)已知命题p:∀x∈[1,2],x2-a0.命题q:∃x0∈R,使得x02+(a-1)x0+1=0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
(本小题满分12分)设数列的前项和为 ,数列为等比数列,且 .(1)求数列和的通项公式;(2)设,求数列的前项和.
如图,在三棱锥中, 平面, , , ,分别是的中点.(1)求证:;(2)求二面角的余弦值;(3)求点到平面的距离.
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).(1)求证:平面EFG∥平面PAB;(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;(3)求三棱锥C-EFG的体积.
如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足 平面,.(1)证明:;(2)求点到平面的距离.