某地最近十年粮食需求量逐年上升,下表是部分统计数据:
(1)利用所给数据求年需求量与年份之间的回归直线方程;(2)利用(1)中所求出的直线方程预测该地第6年的粮食需求量.
若函数满足下列条件:在定义域内存在使得成立,则称函数具有性质;反之,若不存在,则称函数不具有性质。(1)证明:函数具有性质,并求出对应的的值;(2)已知函数具有性质,求的取值范围
探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:(1)若函数,(x>0)在区间(0,2)上递减,则在 上递增;(2)当x= 时,,(x>0)的最小值为 ;(3)试用定义证明,(x>0)在区间(0,2)上递减;(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?(5)解不等式.解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
某校高一(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y (桶)之间满足如图所示关系.(1)求y与x的函数关系式; (2)若该班每年需要纯净水380桶,且a 为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?(3)当a至少为多少时, 该班学生集体改饮桶装纯净水一定合算?从计算结果看,你有何感想(不超过30字)?
二次函数满足:①;②。(1)求的解析式; (2)求在区间上的最大值和最小值;
设集合A={x|a≤x≤a+3},B={x|x<-1或x>5},分别求下列条件下实数a的值构成的集合.(1)A∩B=;(2); (3) .