(1)证明:不论为何值时,直线和圆恒相交于两点;(2)求直线被圆截得的弦长最小时的方程.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实 根,且f′(x)=2x+2. (1)求y=f(x)的表达式; (2)求y=f(x)的图象与两坐标轴所围成图形的面积.
已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1. (1)求a、b; (2)求f(x)的单调区间.
求定积分x2dx的值.
有一质量非均匀分布的细棒,已知其线密度为ρ(x)=2x(取细棒所在直 线为x轴,细棒的一端为原点),棒长为l,试用定积分表示细棒的质量m,并求出m的值.
根据定积分的几何意义推出下列积分的值. (1) xdx; (2)cos xdx.