一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分ξ的数学期望Eξ.
已知复数z=a+bi(a,b∈R)且a2+b2=25,(3+4i)z是纯虚数,求z的共轭复数.
实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在:(1)第三象限;(2)第四象限;(3)直线x-y-3=0上?
设z∈C,求满足z+∈R且|z-2|=2的复数z.
是否存在复数z,使其满足·z+2i="3+ai" (a∈R),如果存在,求出z的值;如果不存在,说明理由.
已知z2=8+6i,求z3-16z-.