某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,. (1)若函数为奇函数,求实数的值; (2)在(1)的条件下,求函数在区间上的所有上界构成的集合; (3)若函数在上是以3为上界的有界函数,求实数的取值范围.
已知圆的方程:,其中. (1)若圆C与直线相交于,两点,且,求的值; (2)在(1)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由.
如图所示,圆锥的轴截面为等腰直角, 为底面圆周上一点. (1)若的中点为,,求证平面; (2)如果,,求此圆锥的全面积.
已知幂函数为偶函数. (1)求的解析式; (2)若函数在区间(2,3)上为单调函数,求实数的取值范围.
已知直线:,(不同时为0),:, (1)若且,求实数的值; (2)当且时,求直线与之间的距离