某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字,张写有数字,张写有数字;乙箱中也有张卡片,其中张写有数字,张写有数字,张写有数字.(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求的分布列及的数学期望;(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有数字的概率是多少?
B.选修4—2 矩阵与变换已知矩阵,其中,若点在矩阵的变换下得到点,(1)求实数a的值; (2)求矩阵的特征值及其对应的特征向量.
A.选修4—1 几何证明选讲在直径是的半圆上有两点,设与的交点是.求证:
.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由.(2)设,,若r>c>4,求证:对于一切n∈N*,不等式恒成立.