(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需证明).
(本小题满分14分)过点(4,1)的直线l与x轴的正半轴,y轴正半轴分别交于A、B两点,当OA+OB最小时,求直线l的方程.
(本小题满分14分)已知不等式同解(即解集相同),求a、b的值.
设,函数,. (Ⅰ)当时,比较与的大小; (Ⅱ)若存在实数,使函数的图象总在函数的图象的上方,求的取值集合.
过轴上动点引抛物线的两条切线、,、为切点,设切线、的斜率分别为和. (Ⅰ)求证:; (Ⅱ)求证:直线恒过定点,并求出此定点坐标;
已知数列满足:,数列满足:,,数列的前项和为. (Ⅰ)求证:数列为等比数列; (Ⅱ)求证:数列为递增数列; (Ⅲ)若当且仅当时,取得最小值,求的取值范围.