已知:如图,在山脚的处测得山顶的仰角为,沿着坡角为的斜坡前进米到达处(即∠,米),测得的仰角为,求山的高度.
11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
已知:如图AC=BD,AB=DC。证明:(1)∠A=∠D;(2)OB=OC
如图,A、C两乡镇到水渠边的距离分别为AB=2km,CD=4km,且BD=8km。(1)在水渠边上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由。(2)求出PA+PC最小值。
已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点。(1)BC与BD相等吗?试说明理由。(2)CE=DE吗?为什么?
(1)计算: (2)求的值: