已知数列{an}和{bn}满足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.(1)对任意实数λ,证明:数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论.
(本小题满分14分)设函数(1)当时,求的极值;(2)当时,求的单调区间;(3)当时,对任意的正整数,在区间上总有个数使得成立,试求正整数的最大值。
(本小题满分12分)设椭圆的离心率,右焦点到直线的距离为坐标原点。(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
(本小题满分12分) 本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。(Ⅰ)求出甲、乙两人所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
. 如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙). (Ⅰ)求证:平面; (Ⅱ)当的长为何值时,二面角的大小为?
已知等差数列的前项和为,且(1)求通项公式;(2)求数列的前项和