请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.(22)(本小题满分10分)选修4—1:几何证明选讲。如图,⊙O是△的外接圆,D是的中点,BD交AC于E.(I)求证:CD=DE·DB;(II)若,O到AC的距离为1,求⊙O的半径.
已知集合,集合(1)若,求集合; (2)若,求实数的取值范围
已知函数,,其中且. (Ⅰ) 当,求函数的单调递增区间;(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
在平面直角坐标系中,已知圆:和直线:,为上一动点,,为圆与轴的两个交点,直线,与圆的另一个交点分别为.(1)若点的坐标为(4,2),求直线方程;(2)求证直线过定点,并求出此定点的坐标.
右图为一组合体,其底面为正方形,平面,,且(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;(Ⅲ)求该组合体的表面积.