现有A,B两个投资项目,投资两项目所获得利润分别是和(万元),它们与投入资金(万元)的关系依次是:其中与平方根成正比,且当为4(万元)时为1(万元),又与成正比,当为4(万元)时也是1(万元);某人甲有3万元资金投资.(1)分别求出,与的函数关系式;(2)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
(本小题满分13分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (1)求证:; (2)求证:平面; (3)求二面角的余弦值.
(本小题满分13分)已知点,,点为坐标原点,点在第二象限,且,记. (1)求的值; (2)若,求的面积.
(本小题满分13分)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率 (Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆的标准方程; (Ⅱ)若,是椭圆上关轴对称的任意两点,设点,连接交椭圆于另一点,求证:直线与轴相交于定点; (Ⅲ)设为坐标原点,在(Ⅱ)的条件下,过点的直线交椭圆于,两点,求的取值范围.
已知数列的前n项和(),数列. (Ⅰ)求证:数列是等差数列,并求数列的通项公式; (Ⅱ)设数列的前n项和为,证明:且时,; (Ⅲ)设数列满足,(为非零常数,),问是否存在整数,使得对任意 ,都有?