2013年某市某区高考文科数学成绩抽样统计如下表:(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)(2)若2013年北京市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
已知的周长为,且. (1)求边长的值; (2)若,求的值.
如图,已知三棱锥,为中点,为的中点,且,. (1)求证:; (2)找出三棱锥中一组面与面垂直的位置关系,并给出证明(只需找到一组即可)
已知双曲线的离心率为,左、右焦点分别为、,一条准线的方程为. (1)求双曲线的方程; (2)若双曲线上的一点满足,求的值; (3)若直线与双曲线交于不同的两点,且在以为圆心的圆上,求实数的取值范围.
已知函数. (1)当时,求的单调递增区间; (2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.
已知等差数列{}前项和为,且 (1)求数列{}的通项公式 (2)若,求数列的前项和