如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.
如图,在 Rt Δ BCD 中, ∠ CBD = 90 ° , BC = BD ,点 A 在 CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF ⊥ EA ,交 CD 所在直线于点 F .
(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC − DE = 2 2 DF .
(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC 、 DE 与 DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.
某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.甲、乙两车间各自加工大米数量 y (吨 ) 与甲车间加工时间 x (天 ) 之间的关系如图(1)所示;未加工大米 w (吨 ) 与甲加工时间 x (天 ) 之间的关系如图(2)所示,请结合图象回答下列问题:
(1)甲车间每天加工大米 吨, a = .
(2)求乙车间维修设备后,乙车间加工大米数量 y (吨 ) 与 x (天 ) 之间函数关系式.
(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?
为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:
(1)直接写出 a 的值, a = ,并把频数分布直方图补充完整.
(2)求扇形 B 的圆心角度数.
(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?
如图,抛物线 y = x 2 + bx + c 与 y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = − 2 ,平行于 x 轴的直线与抛物线交于 B 、 C 两点,点 B 在对称轴左侧, BC = 6 .
(1)求此抛物线的解析式.
(2)点 P 在 x 轴上,直线 CP 将 ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, ΔABC 的三个顶点坐标分别为 A ( 1 , 4 ) , B ( 1 , 1 ) , C ( 3 , 1 ) .
(1)画出 ΔABC 关于 x 轴对称的△ A 1 B 1 C 1 ;
(2)画出 ΔABC 绕点 O 逆时针旋转 90 ° 后的△ A 2 B 2 C 2 ;
(3)在(2)的条件下,求线段 BC 扫过的面积(结果保留 π ) .