(年新疆乌鲁木齐14分)如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.
(1)已知:sinα·cos60º=,求锐角α; (2)计算:.
如图,在直角梯形ABCD中,AD∥CB, ,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形ABQP是平行四边形.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积。
某工程队在我城中村拆迁改造过程中承包了一项拆迁工程,原计划每天拆迁1250平方米,应准备工作不足,第一天少拆迁了20% 。从第二天起,该工程对加快了拆迁速度,第三天拆迁了1440平方米,(1)求:该工程队第一天拆迁的面积;(2)若该工程队第二天,第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米。设这个苗圃园垂直于墙的一边的长为x米(1)用含x的代数式表示平行于墙的一边的长为____米,.x的取值范围为____(2)这个苗圃园的面积为88平方米时,求x的值