如图,在直角梯形ABCD中,AD∥CB, ,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形ABQP是平行四边形.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
(本小题满分6分)化简:.
(本小题满分12分,每题6分) (1)计算:. (2)解方程组:.
已知抛物线的表达式为 (1)若抛物线与轴有交点,求的取值范围; (2)设抛物线与轴两个交点的横坐标分别为、,若,求的值; (3)若P、Q是抛物线上位于第一象限的不同两点,PA、QB都垂直于轴,垂足分别为A、B,且△OPA与△OQB全等,求证:
已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q, (1)当点P,运动到Q、C两点重合时(如图1),求AP的长。 (2)点运动过程中,有几个位置(几种情况)使△CQD的面积为?( 直接写出答案) (3)当使△CQD的面积为,且Q位于以CD为直径的的上半圆上,CQ>QD时(如图2),求AP的长。
P表示边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与的关系式是:(其中,是常数,) (1)填空:通过画图可得:四边形时,P=(填数字),五边形时,,P=(填数字) (2)请根据四边形和五边形对角线交点的个数,结合关系式,求的值 (注:本题的多边形均指凸多边形)