如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0∈,q:{x|x2-3x-5<0}R;(4)p:5≤5,q:27不是质数;(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.(1)p:3是9的约数,q:3是18的约数;(2)p:菱形的对角线相等,q:菱形的对角线互相垂直;(3)p:方程x2+x-1=0的两实根符号相同,q:方程x2+x-1=0的两实根绝对值相等.(4)p:是有理数,q: 是无理数.
a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.
已知x,y∈R.求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.