已知椭圆的离心率,短轴长为.(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
已知a>0,求证: -≥a+-2.
已知函数f(x)=x3.(1)判断f(x)的奇偶性;(2)求证:f(x)>0.
已知Sn为正项数列{an}的前n项和,且满足Sn=+an(n∈N+),求出a1,a2,a3,a4,猜想{an}的通项公式并给出证明
先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:+≥.证明:构造函数f(x)=(x-a1)2+(x-a2)2,f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8(+)≤0,∴+≥.(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;(2)参考上述解法,对你推广的结论加以证明.
设V为全体平面向量构成的集合,若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.现给出如下映射:①f1:V→R,f1(m)=x-y,m=(x,y)∈V;②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.分析映射①②③是否具有性质p.