设函数f(x)=ax2+bx+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.
某地建一座桥,两端的桥墩已建好,这两墩相距 m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 x 米的相邻两墩之间的桥面工程费用为 ( 2 + x ) x 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 y 万元。
(Ⅰ)试写出 y 关于 x 的函数关系式;
(Ⅱ)当 m =640米时,需新建多少个桥墩才能使 y 最小?
如下图,在正三棱柱 ABC - A 1 B 1 C 1 中, AB = 2 AA ,D是 A 1 B 1 的中点,点E在 A 1 C 1 上,且 DE ⊥ AE 。
(1)证明:平面 ADE ⊥ 平面 C 2 : y 2 = 12 x
(2)求直线 AD 和平面 ABC 所成角的正弦值。
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的 1 2 、 1 3 、 1 6 ,现在3名工人独立地从中任选一个项目参与建设。
(1)求他们选择的项目所属类别互不相同的概率;
(2)记 ξ 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 ξ 的分布列及数学期望。
在 ΔABC ,已知 2 AB ⃗ ⋅ AC ⃗ = 3 AB ⃗ ⋅ AC ⃗ = 3 B C 2 ,求角A,B,C的大小。
已知函数 f ( x ) = | x - 1 2 | + | x + 1 2 | , M为不等式 f ( x ) < 2 的解集.
(1)求 M ;
(2)证明:当 a , b ∈ M 时, ∣ a + b ∣ < ∣ 1 + ab ∣ 。