已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.
如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,求PC和CD的长.
在梯形ABCD中,点E、F分别在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求证:(m+n)EF=mBC+nAD.你能由此推导出梯形的中位线公式吗?
如图,四边形ABCD是正方形,E是AD上一点,且AE=AD,N是AB的中点,NF⊥CE于F,求证:FN2=EF·FC.
如图,在平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD. (1)求证:△ABF∽△CEB; (2)若△DEF的面积为2,求平行四边形ABCD的面积.
在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,求.