已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.
(本小题满分10分)已知向量。(1)若,求的值;(2)设的三边满足,且边所对的角的取值集合为,当时,求函数的值域.
(本小题满分12分)已知函数,若x=0,函数f(x)取得极值(Ⅰ)求函数f(x)的最小值;(Ⅱ)已知a>b≥0,证明:.
(本小题满分12分)已知直线与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0)。(I)若动点M满足,求点M的轨迹C;(II)若过点B的直线(斜率不等于零)与(I)中的轨迹C交于不同的两点E.F(E在B.F之间),试求与面积之比的取值范围。
(本小题满分12分)数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*(Ⅰ)求数列{an}的通项公式;(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
(本小题满分12分)如图,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D为B1C1的中点。(Ⅰ)证明:B1C⊥面A1BD;(Ⅱ)求二面角B—AC—B1的大小。