如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切?
阅读下面的例题,请参照例题解方程. 例:解方程 解:(1)当≥0时,原方程化为, 解得:(不合题意,舍去). (2)当<0时,原方程化为, 解得:(不合题意,舍去). ∴原方程的根是. 解方程
如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N. 求证:(1); (2)
先化简,再求值:,其中
解下列方程: (1)用配方法解方程; (2)用公式法解方程
某农户去年承包荒山若干亩,投资7800 元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8 人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元. (1)分别用a,b表示两种方式出售水果的收入? (2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好. (3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少? (纯收入=总收入-总支出,该农户采用了(2)中较好的出售方式出售)