(已知矩阵,记绕原点逆时针旋转的变换所对应的矩阵为(1)求矩阵;(2)若曲线:在矩阵对应变换作用下得到曲线,求曲线的方程.
设,函数,函数,. (Ⅰ)当时,写出函数零点个数,并说明理由; (Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.
如图,、为椭圆的左、右焦点,、是椭圆的两个顶点,椭圆的离心率,.若在椭圆上,则点称为点的一个“好点”.直线与椭圆交于、两点, 、两点的“好点”分别为、,已知以为直径的圆经过坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
如图,已知四棱锥的底面为菱形,,,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响 (1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望; (2)请分析比较甲、乙两人谁的面试通过的可能性大?
已知数列的前项和为,,,. (Ⅰ) 求证:数列是等比数列; (Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.