附加题(本题满分10分)某厂生产某种零件,每个零件的成本为元,出厂单价定为元,该厂为鼓励销售部门订购,决定当一次订购量超过个时,每多订购一个,订购全部零件的出厂单价就降元,但实际出厂单价不能低于元.(Ⅰ)当一次订购量为多少时,零件的实际出厂单价恰降为元?(Ⅱ)当一次订购量为个,零件的实际出厂单价为元,写出函数的表达式.(Ⅲ)当销售商一次订购个零件时,该厂获得的利润是多少元?如果订购个,利润是多少元?
在△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),n=(2sin2(+),-1),且m⊥n. (1)求角B的大小; (2)求sinA+cosC的取值范围.
已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π. (1)求ω值及f(x)的单调递增区间; (2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C的大小.
已知函数f(x)=cos(+x)·cos(-x),g(x)=sin2x-. (1)求函数f(x)的最小正周期; (2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
已知α,β∈(0,π),且tan(α-β)=,tanβ=-,求2α-β的值.
已知函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形. (1)求ω的值及函数f(x)的值域; (2)若f(x0)=,且x0∈(-,),求f(x0+1)的值.