已知椭圆的右焦点为F2(1,0),点 在椭圆上.(1)求椭圆方程;(2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.
(本题满分分)在边长为的正方体中,是的中点,是的中点,(1)求证:∥平面;(2)求点到平面的距离;(3)求二面角的平面角大小的余弦值.
(本题满分分)袋中有质地、大小完全相同的个球,编号分别为、、、、,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢。(1) 求两个编号的和为6的概率;(2)求甲赢的事件发生的概率.
(示范高中做)(本题满分分)已知双曲线的离心率为,且双曲线上点到右焦点的距离与到直线 的距离之比为(1) 求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求的值.
(普通高中做)(本题满分分)已知抛物线的顶点在坐标原点,焦点在轴正半轴,抛物线上一点到焦点的距离为,求的值及抛物线方程.
本题满分分)已知命题:关于的一元二次方程有两个不相等的实数根,命题:是增函数,若或为真命题,且为假命题,求实数的取值范围.