如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值的大小;(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.
一汽车厂生产 A , B , C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有 A 类轿车10辆. ⑴求 z 的值. ⑵用分层抽样的方法在 C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; ⑶用随机抽样的方法从 B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
已知关于x的一元二次函数 (1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间[上是增函数的概率; (2)设点(,)是区域内的随机点,求函数上是增函数的概率.
甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字),设甲、乙所抛掷骰子朝上的面的点数分别为、,那么 (I)共有多少种不同的结果? (II)请列出满足复数的实部大于虚部的所有结果. (III)满足复数的实部大于虚部的概率是多少?
甲盒中有红、黑、白三种颜色的球各3个;乙盒中有黄、黑、白三种颜色的球各2个.从两个盒子中各取1个球. (1)求取出的两个球是不同颜色的概率; (2)请设计一种随机摸拟方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).