如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且=λ.(1)求证:EF∥平面PAD.(2)当λ=时,求异面直线BF与CD所成角的余弦值;(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
(本小题满分14分)已知数列中,(1)求证:数列是等比数列;(2)设,求证:数列的前项和.(3)比较与的大小()。
如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一点.⑴求证:;⑵确定点在线段上的位置,使//平面,并说明理由.⑶当二面角的大小为时,求与底面所成角的正切值.
(本题满分12分) 2010年上海世博会上展馆与展馆位于观光路的同侧,在观光路上相距千米的两点分别测得,( 在同一平面内),求展馆之间的距离.
(本小题满分12分)已知函数是的导函数.(1)若,求的值. (2)求函数()的单调增区间。
(本小题满分12分)已知函数().(1)试讨论在区间上的单调性;(2)当时,曲线上总存在相异两点,,使得曲线在点,处的切线互相平行,求证:.