如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且=λ.(1)求证:EF∥平面PAD.(2)当λ=时,求异面直线BF与CD所成角的余弦值;(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
已知直线与直线没有公共点, 求实数m的值
已知直线l经过直线5x-2y+3=0和5x+y-9=0的交点,且与直线2x+3y+5=0平行,求直线l方程.
已知圆C:,直线l:(m∈R).(Ⅰ)证明:不论m取什么实数,直线l与圆恒交于两点. (Ⅱ)求直线被圆C截得的弦长最小时l的方程.
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量 AB=100m,BC=80m,AE=30m,AF=20m. (1)求直线EF的方程. (2)应如何设计才能使草坪的占地面积最大?
正方体ABCD—A1B1C1D1的棱长为 ⑴求△AB1D1的面积;⑵求三棱锥的体积。