由于某高中建设了新校区,为了交通方便要用三辆通勤车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
(本小题满分12分)某市为了对公租房的租金实施办法进行研究,用分层抽样方法从A,B,C三个社区的相关家庭中,抽取若干户家庭进行调研,有关数据见下表(单位:户) (Ⅰ)求x,y; (Ⅱ)若从B、C两个片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭都来自C片区的概率.
(本小题满分12分)如图,四棱锥S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°, AD=DC=,SA=SC=SD=2. (Ⅰ)求证:AC⊥SD; (Ⅱ)求三棱锥的体积.
(本小题满分12分)如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为60°,再由点C沿东偏北75°方向走20米到达位置D,测得∠BDC=30°。 (Ⅰ)求sⅠn∠BCD的值; (Ⅱ)求此建筑物的高度.
(本小题满分10分)选修4—5:不等式选讲 已知函数 (Ⅰ)求的最大值; (Ⅱ)若关于x的不等式有实数解,求实数k的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知倾斜角为的直线经过点P(1,1). (Ⅰ)写出直线的参数方程; (Ⅱ)设直线与直线相交于两点,求的值.