设 { a n } 是公差不为零的等差数列, S n 为其前 n 项和,满足 a 2 2 + a 3 2 = a 4 2 + a 5 2 , S 7 = 7 .
(1)求数列 { a n } 的通项公式及前 n 项和 S n ;
(2)试求所有的正整数 m ,使得 a m a m + 1 a m + 2 为数列 { a n } 中的项.
设 (1)若在上递增,求的取值范围; (2)若在上的存在单调递减区间 ,求的取值范围
已知函数(), (Ⅰ)求函数的最小值; (Ⅱ)已知,:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个点为. (1)求的解析式; (2)若求函数的值域; (3)将函数的图象向左平移个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的函数解析式.
(本小题满分13分)是等差数列,是各项都为正数的等比数列,且,. (Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。
(本小题满分12分) 如图,在底面为直角梯形的四棱锥P—ABCD中,,平面 (1)求证:平面PAC; (2) 求二面角的大小.