设 { a n } 是公差不为零的等差数列, S n 为其前 n 项和,满足 a 2 2 + a 3 2 = a 4 2 + a 5 2 , S 7 = 7 .
(1)求数列 { a n } 的通项公式及前 n 项和 S n ;
(2)试求所有的正整数 m ,使得 a m a m + 1 a m + 2 为数列 { a n } 中的项.
在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.求角A的大小.
已知△ABC中,内角A、B、C的对边分别为a、b、c,且sin2+cos=,求角C的大小.
已知函数f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期为.(1)写出函数f(x)的单调递增区间;(2)求函数f(x)在区间上的取值范围.
若cos=,π<x<π,求的值.
已知函数f(x)=-2sin2x+2sinxcosx+1.(1)求f(x)的最小正周期及对称中心;(2)若x∈,求f(x)的最大值和最小值.