(本小题满分14分)设数列、满足:,,.(1)求的值;(2)求数列的通项公式;(3)求数列的前项和的值.
某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.(Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;(Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望.
已知两点,点为坐标平面内的动点,且满足.(Ⅰ)求点的轨迹的方程;(Ⅱ)设过点的直线斜率为,且与曲线相交于点、,若、两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.
已知函数,直线与函数图象相切.(Ⅰ)求直线的斜率的取值范围;(Ⅱ)设函数,已知函数的图象经过点,求函数的极值.
在数列中,.(Ⅰ)求证:数列为等差数列;(Ⅱ)设数列满足,若对一切且恒成立,求实数的取值范围.
如图1所示,在边长为的正方形中,,且,,分别交于点,将该正方形沿、折叠,使得与重合,构成如图2所示的三棱柱中(Ⅰ)求证:;(Ⅱ)在底边上有一点,,求证:面(III)求直线与平面所成角的正弦值.