在平面直角坐标系 x O y 中,已知圆 C 1 : x + 3 2 + y - 1 2 = 4 和圆 C 2 : x - 4 2 + y - 5 2 = 4 . (1)若直线 l 过点 A 4 , 0 ,且被圆 C 1 截得的弦长为 2 3 ,求直线 l 的方程;
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直的直线 l 1 和 l 2 ,它们分别与圆 C 1 和圆 C 2 相交,且直线 l 1 被圆 C 1 截得的弦长与直线 l 2 被圆 C 2 截得的弦长相等,试求所有满足条件的点P的坐标.
已知,研究函数的单调区间。
已知函数的图象与函数的图象关于点A(0,1)对称.(1)求的解析式;(2)(文)若且在区间(0,上为减函数,求实数的取值范围; (理)若=+,且在区间(0,上为减函数,求实数的取值范围.
设的定义域为,的导函数为,且对任意正数均有, (1)判断函数在上的单调性; (2)设,比较与的大小,并证明你的结论; (3)设,若,比较与的大小,并证明你的结论.
已知R,函数(x∈R). (1)当时,求函数的单调递增区间; (2)函数是否在R上单调递减,若是,求出的取值范围;若不是,请说明理由; (3)若函数在上单调递增,求的取值范围.
已知函数. ⑴设.试证明在区间 内是增函数; ⑵若存在唯一实数使得成立,求正整数的值; ⑶若时,恒成立,求正整数的最大值.