已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小 度时,四边形ACDE成为以ED为底的梯形(如图(2))求此梯形的高.
求值:(1)已知a=,b=,求-的值.(2)已知x=,求x2-x+的值.
我校八年级实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室.问这个学校共有教室多少间?八年级共有多少人?
点P1是P(-3,5)关于x轴的对称点,且一次函数过P1和A(1,-2),求此一次函数的表达式.
某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理销售结果如下表:
(1)跳楼价占原价的百分比是多少? (2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?
已知:,求:的值.