近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等。(1)、若学校只有一个名额,则随机选到小斌的概率是______________。(2)、若学校争取到两个名额,请有树状图或列表法求随机选到保送的学生恰好是一男一女的概率。
如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=. (1)求过A、C、D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2. (1)求该反比例函数和一次函数的解析式; (2)求点B的坐标; (3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
在Rt△ABC中,∠ACB=90°,D是边AB的中点,BM⊥CD于点M,已知AC=6,tanA=. (1)求线段CD的长; (2)求sin∠BDM的值.
忻州有“秀容古城”之称,某校就同学们对“忻州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图: 根据统计图的信息,解答下列问题: (1)本次共凋查 名学生,条形统计图中m= ; (2)若该校共有学生1000名,则该校约有 名学生不了解“忻州历史文化”; (3)调查结果中,该校八年级(2)班学生中了解程度为“很了解”的同学是两名男生、一名女生,现准备从其中随机抽取两人去市里参加“忻州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.
如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm. (1)求证:AC是⊙O的切线; (2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)