如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.⑴求椭圆与椭圆的方程;⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B, (1) 求直线在轴上截距的取值范围; (2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
分别求适合下列条件圆锥曲线的标准方程: (1)焦点为、且过点椭圆; (2)与双曲线有相同的渐近线,且过点的双曲线.
已知函数:,其中:,记函数满足条件:的事件为A,求事件A发生的概率。
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
(1)求出表中所表示的数; (2)画出频率分布直方图;
已知, (1)讨论的单调区间; (2)若对任意的,且,有,求实数的取值范围.