某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?
已知点,,,,点在线段CD垂直平分线上,求(1)线段CD垂直平分线方程。(2)取得最小值时点的坐标。
已知ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F是侧棱PD、PC的中点。(1)求证:平面PAB; (2)求直线PC与底面ABCD所成角的正切值。
如图,在平行四边形中,边所在直线方程为,点。(1)求直线的方程;(2)求边上的高所在直线的方程。
如图,在正方体中, (Ⅰ) 求证:;(Ⅱ) 求二面角的正切值.
已知椭圆E:的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于A、B两点。(1)求实数的值; (2)求DABO(O为原点)面积的最大值.