.(本小题满分12分)如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点,观察对岸的点,测得 ,且米.(1)求;(2)求该河段的宽度.
在正方体中,棱长为2,是棱上中点,是棱中点,(1)求证:面;(2)求三棱锥的体积.
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示: (1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
已知函数.(1)求函数的最小正周期和最小值;(2)若,,求的值.
已知二次函数,且不等式的解集为. (1)方程有两个相等的实根,求的解析式; (2)的最小值不大于,求实数的取值范围; (3)如何取值时,函数存在零点,并求出零点.
在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.