已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.(1)证明和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
已知 (1)当时,求函数的单调区间。 (2)当时,讨论函数的单调增区间。 (3)是否存在负实数,使,函数有最小值-3?
已知函数 (1)求曲线在点处的切线方程; (2)若关于的方程有三个不同的实根,求实数的取值范围.
设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求 (Ⅰ)求点的坐标; (Ⅱ)求动点的轨迹方程.
设函数在及时取得极值. (1)求a、b的值; (2)若对于任意的,都有成立,求c的取值范围.
用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?