如图,四棱柱的底面是平行四边形,且,,,为的中点,平面.(Ⅰ)证明:平面平面;(Ⅱ)若,试求异面直线与所成角的余弦值;(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.
已知数列{an},an∈N*,前n项和Sn=(an+2)2.(1)求证:{an}是等差数列;(2)若bn=an﹣30,求数列{bn}的前n项和的最小值.
已知二项式的展开式中各项系数的和为64.(I)求n;(II)求展开式中的常数项.
(本小题满分14分)已知函数在处有极小值。(1)求函数的解析式;(2)若函数在只有一个零点,求的取值范围。
(本小题满分14分)如图,在中,,以、为焦点的椭圆恰好过的中点。(1)求椭圆的标准方程;(2)过椭圆的右顶点作直线与圆 相交于、两点,试探究点、能将圆分割成弧长比值为的两段弧吗?若能,求出直线的方程;若不能,请说明理由.
(本小题满分14分)已知数列的前项和满足,等差数列满足,。(1)求数列、的通项公式;(2)设,数列的前项和为,问>的最小正整数是多少?